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INTRODUCTION

This report presents results of the first year of effort on a program with the

objective to develop a unified constitutive model for finite-element structural anal-

ysis of turbine engine hot section components. The program is a joint effort be-

tween Southwest Research Institute and Pratt & Whitney Aircraft.

The initial two year program includes a state-of-the-art review of applicable

constitutive models with selection of two for detailed comparison with a wide range

of experimental test. The experimental matrix contains uniaxial and biaxial ten-

sile, creep, stress relaxation and cyclic fatigue tests at temperatures to I093°C

and strain rates from 10-7 to 10-3 sec-l. Some non-isothermal TMF cycles will be

run also. The constitutive models will be incorporated into the MARC finite ele-

ment structural analysis program with a demonstration computation made for an ad-

vanced turbine blade configuration. In the code development work, particular empha-

sis is being placed on developing efficient integration algorithms for the highly

non-linear and stiff constitutive equations. Another area of emphasis is the appro-

priate and efficient methodolgy for determining constitutive constants from a min-

imum extent of experimental data.

CONSTITUTIVE MODELS

An extensive review of currently available unified constitutive models was

made from which a review is given in references 1 and 2. In a "unified" theory, the

inelastic strain rate term, _P, is considered to include all strains that are not

elastic; i.e., the difference between the total strain and the elastic strain,

_ge. Thus, unified implies that all aspects of inelastic behavior such as plastic

flow, creep and stress relaxation are included in the single function, _P, and are

simply representative response characteristics for different loading histories. In

such theories, inelastic behavior may be described with or without the use of a

yield function or concept of plastic potential. Those chosen here for further study

do not employ a yield criteria and are based on internal variables to describe

"yielding" and strain or work hardening behavior.

Two particular constitutive models were chosen for detailed study and compar-

ison with experimental data. These were developed by Bodner and Partom (B-P)

(ref. 3) and by Walker (WK) (ref. 4). Both models had considerable prior application

to high-temperature alloys used in gas turbine components. Most unified models are

of the basic form

_-xI

X 2
= f (_P,T) (i)
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here o, _P and T are stress, inelastic strain rate and temperature, respectively.

Generally_ two independent internal variables are used, _i a tensor quantity de-

scribing directional material hardening (often referred to as a back stress, equi-

librium stress, or kinematic hardening variable) and X 2 a scalar measure of the
magnitude of isotropic hardening. The evolutionary eqHations for both internal

variables are usually of the hardening-recovery form,

X'I = h(Xi) _ + r(Xi'T) (2)

where M is a physical measure of hardening and h and r are hardening and recovery

functions.

The WK model uses a power law for the kinetic term, f(_P,T), and plastic

strain as the measure of hardening M. The B-P model uses an exponential form in

the kinetic term and plastic work for M. The other major difference between the

two models is that B-P avoids the use of the back stress _i and encorporates both

isotropic and directional hardening in a partitioning of X 2. For a more detailed
comparison see references 1 and 2.

EXPERIMENTAL PROGRAM

An extensive test program is underway to generate a comprehensive set of data

which is to be compared with model predictions. A cast nickel base alloy, BI9OO+Hf,

with grain size of ASTM No. 1 to 2 is used for the specimens shown in figure i. As

indicated, tensile, creep, isothermal cyclic, thermomechanical cyclic and biaxial

(tension-torsion) tests are being performed. To date the tensile, creep and iso-

thermal cyclic tests are complete. Sample results, including correlations with the

B-P model, are given in figures 2-5 (correlations with the WK model are being gen-

erated also but were not available as of this writing). All model correlations are

made with a single set of material constants.

Figure 2 shows the correlation for tensile curve at three temperatures. In

the process of determining the constants associated with work hardening in the B-P

model, the experimental hardening data was plotted as in figure 3 where y = do/dWp
do/o dEP. Analysis shows that the data at each strain rate can be closely approxl-

mated as the sum of two linear curves, whose slopes and intercepts yield the co-

efficients for the isotropic and kinematic hardening terms. Thus, it appears pos-

sible to predict cyclic behavior from monotonic stress-strain curves. This con-

clusion needs further verification but holds potential for reducing the testing
required for constitutive constant determinations. Another observation from

figure 3 is that a change in strain rate does not change the hardening rate (slope)

in agreement with the separation of kinetic and hardening terms in equation (i).

The slopes do change with temperature because of thermal recovery of hardening
(eq. (2)).

Figure 4 shows the small strain (0.2%g p) flow stress over the range of tem-

perature and strain rate studied. Inflections in the curves at the intermediate

temperatures result from the influence of thermal recovery at lower rates and higher

temperatures. At low temperatures and high rates, thermal recovery is not signi-
ficant.
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An example of initial and saturated cyclic loops at 538°C is given in figure 5.

Agreement between experiment and theory is reasonable in this and other cases exam-

ined considering the same constants are used for figures 2, 4 and 5. More complex

loops with creep or relaxation holds during a cycle will be correlated during the

second year along with cyclic biaxial data.

IMPLEMENTATION IN F.E. CODE

Both models are being implemented for use with the MARC finite element code.

The code will subsequently be used to analyze a notched tensile round test specimen

used as a benchmark experiment and also an advanced turbine blade configuration.

The latter will be a numerical demonstration only. Several numerical methods are

being studied for implementing the models in the MARC code. Integration methods

for viscoplastic theories to be examined include:

(i) Explicit Euler integration with both a fixed and self-adaptive

time step

(2) The implicit noniterative, selfcorrecting solution (NONSS)

method of Miller and Tanaka (ref. 5)

(3) Implicit integration of the integral form of the equations.

It is expected that each theory will be coded with at least two numerical inter-

gration algorithms.

SUMMARY

The work to date is encouraging with respect to the ability of unified con-

stitutive theories to predict with reasonable accuracy quite complex time and tem-

perature dependent inelastic material behavior. Also encouraging, at this point, is

the possibility of determining all necessary constitutive constants from perhaps as

little as monotonic tensile curves at several temperatures and strain rates. Such

data is generally available for alloys of interest. For implementation of the

models in finite element codes and efficient structural analysis, optimum numerical

integration schemes need further development.
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Figure i. Specimen Designs Utilized in Various Constitutive Tests.

288



I000 , , , ,

Q..

aJ

C,O

Figure 2.

800

600

4OO

200

bl _-.

II

0
0

B1900+Hf

Figure 3.

10-5
]

= 8_3 x sec TM
m

Bodner-Partom Theory 538°C (IO00°F)

--- Experiment

I I f I

,2 ,4 ,6 ,8

Strain, %

.0

A Comparison of the Calculated (Bodner-Partom Theory)

and the Experimental Stress-Strain Curves of

BI900+Hf at 538, 871 and 982°C.

600

500

400

3OO

200 -

I00 -

0
200 800

I I I i I

_1900 + Hf

871 °C
• x 10 -6 sec -I

F _ : 8.3 x 10-5 sec"I

r_ : 1.65 x 10-3

sec" 1

I I, I

300 400 500 500 700

Stress, o-, MPo

Work Hardening Behavior of BI900+Hf at Three
Strain Rates and 871°C.

289



1000

800

r_

600

4OO

200 B

0

10 -7

B1900+H f

SwRI Data PWA Data
• O 760°C --Bodner-Partom Theory

_ _ 0 871°C

• i-I 982°C

A AI093°C o

_ /- 760 C
O

m

m

_ T _1 I I fll _ I II1 I I III I I i,I ,

10-6 10-5 10-4 -I I0-3 i0 -2
Strain Rate, sec

I I I

I I I

i0 -I

Figure 4. Temperature and Strain-Rate Dependence of 0.2%
Offset Yield Stress for BI900+Hf.

29O



1000

8OO

60O

¢00

200

E

0

- 200

- _00

- 600

- 80O

-I000

100'3.

OOO.

600.

0::

200.

ur_

q" O. O0

-200.

-qO0.

-6uO,

-dUO.

- I O00.

I t I I

BIgOO+Hf I-2 Cycles
m

538°C

--_ = +8.3 x I0"4 sec"I / 7

__---PWA Data//

m

m

m

w

I I I 1

Strain, %

(a) Experiment

i z i i

8odner-Partom Theory

538°C

= +8.3 x 10 -4 sec "l

1

I I

,/

//

/

//
/

ed

Strain, %

(b) Bodner-Partom Theory

Figure 5. A Comparison of the Calculated (Bodner-Partom Theory) and

the Experimental Hysteresis Loops After 1-2 Cycles and at

Cyclic Saturation.
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